RadarURL

논문
2012.12.03 04:52

PSEUDOCODE STANDARD

조회 수 4689 추천 수 0 댓글 0
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄

Pseudocode is a kind of structured english for describing algorithms. It allows the designer to focus on the logic of the algorithm without being distracted by details of language syntax.  At the same time, the pseudocode needs to be complete.  It describe the entire logic of the algorithm so that implementation becomes a rote mechanical task of translating line by line into source code.

In general the vocabulary used in the pseudocode should be the vocabulary of the problem domain, not of the implementation domain.  The pseudocode is a narrative for someone who knows the requirements (problem domain) and is trying to learn how the solution is organized.  E.g.,

Extract the next word from the line (good)
set word to get next token (poor)

Append the file extension to the name (good)
name = name + extension (poor)

FOR all the characters in the name (good)
FOR character = first to last (ok)

Note that the logic must be decomposed to the level of a single loop or decision. Thus "Search the list and find the customer with highest balance" is too vague because it takes a loop AND a nested decision to implement it. It's okay to use "Find" or "Lookup" if there's a predefined function for it such as String.indexOf().

Each textbook and each individual designer may have their own personal style of pseudocode. Pseudocode is not a rigorous notation, since it is read by other people, not by the computer. There is no universal "standard" for the industry, but for instructional purposes it is helpful if we all follow a similar style. The format below is recommended for expressing your solutions in our class.

The "structured" part of pseudocode is a notation for representing six specific structured programming constructs: SEQUENCE, WHILE, IF-THEN-ELSE, REPEAT-UNTIL, FOR, and CASE. Each of these constructs can be embedded inside any other construct. These constructs represent the logic, or flow of control in an algorithm.

It has been proven that three basic constructs for flow of control are sufficient to implement any "proper" algorithm.

SEQUENCE is a linear progression where one task is performed sequentially after another.
WHILE is a loop (repetition) with a simple conditional test at its beginning.
IF-THEN-ELSE is a decision (selection) in which a choice is made between two alternative courses of action.


Although these constructs are sufficient, it is often useful to include three more constructs:
 

REPEAT-UNTIL is a loop with a simple conditional test at the bottom.
CASE is a multiway branch (decision) based on the value of an expression. CASE is a generalization of IF-THEN-ELSE.
FOR is a "counting" loop.

SEQUENCE

Sequential control is indicated by writing one action after another, each action on a line by itself, and all actions aligned with the same indent. The actions are performed in the sequence (top to bottom) that they are written.

Example (non-computer)

Brush teeth
Wash face
Comb hair
Smile in mirror

Example

READ height of rectangle
READ width of rectangle
COMPUTE area as height times width

Common Action Keywords

Several keywords are often used to indicate common input, output, and processing operations.
Input: READ, OBTAIN, GET
Output: PRINT, DISPLAY, SHOW
Compute: COMPUTE, CALCULATE, DETERMINE
Initialize: SET, INIT
Add one: INCREMENT, BUMP

IF-THEN-ELSE

Binary choice on a given Boolean condition is indicated by the use of four keywords: IF, THEN, ELSE, and ENDIF. The general form is:

IF condition THEN
sequence 1
ELSE
sequence 2
ENDIF

The ELSE keyword and "sequence 2" are optional. If the condition is true, sequence 1 is performed, otherwise sequence 2 is performed.

Example

IF HoursWorked > NormalMax THEN
Display overtime message
ELSE
Display regular time message
ENDIF

WHILE

The WHILE construct is used to specify a loop with a test at the top. The beginning and ending of the loop are indicated by two keywords WHILE and ENDWHILE. The general form is:

WHILE condition
sequence
ENDWHILE

The loop is entered only if the condition is true. The "sequence" is performed for each iteration. At the conclusion of each iteration, the condition is evaluated and the loop continues as long as the condition is true.

Example

WHILE Population < Limit
Compute Population as Population + Births - Deaths
ENDWHILE

Example

WHILE employee.type NOT EQUAL manager AND personCount < numEmployees
INCREMENT personCount
CALL employeeList.getPerson with personCount RETURNING employee
ENDWHILE

CASE

A CASE construct indicates a multiway branch based on conditions that are mutually exclusive. Four keywords, CASE, OF, OTHERS, and ENDCASE, and conditions are used to indicate the various alternatives. The general form is:

CASE expression OF
condition 1 : sequence 1
condition 2 : sequence 2
...
condition n : sequence n
OTHERS:
default sequence
ENDCASE

The OTHERS clause with its default sequence is optional. Conditions are normally numbers or characters

indicating the value of "expression", but they can be English statements or some other notation that specifies the condition under which the given sequence is to be performed. A certain sequence may be associated with more than one condition.

Example

        CASE  Title  OF
                Mr      : Print "Mister"
                Mrs     : Print "Missus"
                Miss    : Print "Miss"
                Ms      : Print "Mizz"
                Dr      : Print "Doctor"
        ENDCASE

Example

        CASE  grade  OF
                A       : points = 4
                B       : points = 3
                C       : points = 2
                D       : points = 1
                F       : points = 0
        ENDCASE

REPEAT-UNTIL

This loop is similar to the WHILE loop except that the test is performed at the bottom of the loop instead of at the top. Two keywords, REPEAT and UNTIL are used. The general form is:

REPEAT
sequence
UNTIL condition

The "sequence" in this type of loop is always performed at least once, because the test is peformed after the sequence is executed. At the conclusion of each iteration, the condition is evaluated, and the loop repeats if the condition is false. The loop terminates when the condition becomes true.
 

FOR

This loop is a specialized construct for iterating a specific number of times, often called a "counting" loop.  Two keywords, FOR and ENDFOR are used. The general form is:

FOR iteration bounds
sequence
ENDFOR

In cases where the loop constraints can be obviously inferred it is best to describe the loop using problem domain vocabulary.

Example

FOR each month of the year (good)
FOR month = 1 to 12 (ok)

FOR each employee in the list (good)
FOR empno = 1 to listsize (ok)


NESTED CONSTRUCTS

The constructs can be embedded within each other, and this is made clear by use of indenting. Nested constructs should be clearly indented from their surrounding constructs.

Example

SET total to zero
REPEAT
READ Temperature
IF Temperature > Freezing THEN
    INCREMENT total
END IF
UNTIL Temperature < zero
Print total

In the above example, the IF construct is nested within the REPEAT construct, and therefore is indented.
 
 

INVOKING SUBPROCEDURES

Use the CALL keyword. For example:

CALL AvgAge with StudentAges
CALL Swap with CurrentItem and TargetItem
CALL Account.debit with CheckAmount
CALL getBalance RETURNING aBalance
CALL SquareRoot with orbitHeight RETURNING nominalOrbit


EXCEPTION HANDLING

    BEGIN
        statements
    EXCEPTION
        WHEN exception type
            statements to handle exception
        WHEN another exception type
            statements to handle exception
    END



Sample Pseudocode

"Adequate"

FOR X = 1 to 10

    FOR Y = 1 to 10
        IF gameBoard[X][Y] = 0
            Do nothing
        ELSE
            CALL theCall(X, Y) (recursive method)
            increment counter                 
        END IF
    END FOR
END FOR

"Better"

Set moveCount to 1
FOR each row on the board
    FOR each column on the board
        IF gameBoard position (row, column) is occupied THEN
            CALL findAdjacentTiles with row, column
            INCREMENT moveCount
        END IF
    END FOR
END FOR

(Note: the logic is restructured to omit the "do nothing" clause)



"Not So Good"

FOR all the number at the back of the array
    SET Temp equal the addition of each number
    IF > 9 THEN
        get the remainder of the number divided by 10 to that index
        and carry the "1"
    Decrement one
Do it again for numbers before the decimal
 

"Good Enough (not perfect)"

SET Carry to 0
FOR each DigitPosition in Number from least significant to most significant

    COMPUTE Total as sum of FirstNum[DigitPosition] and SecondNum[DigitPosition] and Carry  

    IF Total > 10 THEN
        SET Carry to 1
        SUBTRACT 10 from Total
    ELSE
        SET Carry to 0
    END IF

    STORE Total in Result[DigitPosition]

END LOOP  

IF Carry = 1 THEN
    RAISE Overflow exception
END IF
 



 

"Pretty Good"  This example shows how pseudocode is written as comments in the source file. Note that the double slashes are indented.

public boolean moveRobot (Robot aRobot)
{
    //IF robot has no obstacle in front THEN
        // Call Move robot
        // Add the move command to the command history
        // RETURN true
    //ELSE
        // RETURN false without moving the robot
    //END IF
}

Example Java Implementation

  • source code statements are interleaved with pseudocode.
  • comments that correspond exactly to source code are removed during coding.

public boolean moveRobot (Robot aRobot)
{
    //IF robot has no obstacle in front THEN
    if (aRobot.isFrontClear())
    {
        // Call Move robot
        aRobot.move();
        // Add the move command to the command history
        cmdHistory.add(RobotAction.MOVE);
        return true;
    }
    else // don't move the robot
    {
        return false;
    }//END IF
}
 

 



Document History

Date Author Change
12/2/03
JD
Added Exception Handling and more examples
2/21/03 JD Added "problem domain vocabulary" paragraph.
Modified FOR loop explanation.

 

출처 : http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

?

공부 게시판

공부에 도움되는 글을 올려주세요.

List of Articles
번호 분류 제목 글쓴이 날짜 조회 수
공지 [공지] 공부 게시판 입니다. 처누 2003.08.18 928097
2473 연애 폭소클럽 제36회 - 즉석미팅 1 (김제동) file JaeSoo 2003.08.18 18981
2472 연애 폭소클럽 제37회 - 즉석미팅 2 (김제동) file JaeSoo 2003.08.18 17808
2471 연애 폭소클럽 제38회 - 방학특집 연애특강 1 (김제동) 1 file JaeSoo 2003.08.18 16361
2470 연애 폭소클럽 제39회 - 방학특집 연애특강 2 (김제동) file JaeSoo 2003.08.18 17828
2469 연애 폭소클럽 제40회 - 방학특집 연애특강 3 (김제동) file JaeSoo 2003.08.18 16842
2468 웹 프로그래밍 이미지 특정 부분에 링크 만들기 처누 2003.08.24 15624
2467 웹 프로그래밍 게시판에 자신의 FTP 자료 올리기 3 처누 2003.08.25 13135
2466 동식물 고양이 클리닉 - 고양이 기르기 file JaeSoo 2003.10.10 13693
2465 동식물 고양이 클리닉 - 고양이 품종 file JaeSoo 2003.10.10 13427
2464 동식물 고양이 클리닉 - 2개월에서 4개월령 고양이 관리 file JaeSoo 2003.10.11 13428
2463 동식물 고양이 클리닉 - 4개월에서 9개월령 고양이 관리 file JaeSoo 2003.10.11 13132
2462 동식물 고양이 클리닉 - 다자란 고양이 file JaeSoo 2003.10.13 13922
2461 동식물 고양이 클리닉 - 나이든 고양이 file JaeSoo 2003.10.13 13679
2460 동식물 고양이 클리닉 - 고양이의 영양 file JaeSoo 2003.10.13 13429
2459 동식물 고양이 먹이와 주의사항 file JaeSoo 2003.10.13 13902
2458 동식물 아기 고양이의 식사 file JaeSoo 2003.10.13 11821
2457 동식물 고양이 사료 급여량 file JaeSoo 2003.10.13 12880
2456 기타 편지봉투 쓰는 법 file JaeSoo 2003.10.21 16993
2455 웹 프로그래밍 제로보드 로그인 실패시 이유를 메세지로 알려주기 처누 2003.11.04 8459
2454 웹 프로그래밍 최근 게시물 출력시 링크게시물에 스타일시트 적용하기 처누 2003.11.06 7927
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 ... 124 Next
/ 124


즐겨찾기 (가족)

JAESOO's HOMEPAGE


YOUNGAE's HOMEPAGE


장여은 홈페이지


장여희 홈페이지


장여원 홈페이지


즐겨찾기 (업무)

알리카페 홀릭

숭실대 컴퓨터 통신연구실 (서창진)

말레이시아 KL Sentral 한국인 GuestHouse


즐겨찾기 (취미)

어드민아이디

유에코 사랑회

아스가르드 좋은사람/나쁜사람

JServer.kr

제이서버 메타블로그

재수 티스토리


즐겨찾기 (강의, 커뮤니티)

재수 강의 홈페이지


한소리


VTMODE.COM


숭실대 인공지능학과


숭실대 통신연구실


베너